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Many-body effects in a laterally inhomogeneous semiconductor quantum well
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Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum
well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHF)
terms and the scattering terms are examined. It is found that the electron and hole conductivities
depend only on the scattering terms, while the two-component electron-hole diffusion coefficients
depend on both the SHF part and the scattering part. We show that, in the limit of the ambipo-
lax diffusion approximation, however, the diffusion coefficients for carrier density and temperature
are independent of electron-hole scattering. In particular, we found that the SHF terms lead to
a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients.
Such a reduction or increase is explained in terms of a density- and temperature-dependent energy
landscape created by the bandgap renormalization.
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Our understanding of Coulomb interaction in an op-

tically excited semiconductor has been greatly enriched
recently thanks to the extensive theoretical 1-3 and ex-
perimental investigations 4 over the past few decades. As

far as optical properties in highly excited semiconductors

(with high carrier density) are concerned, many-body ef-
fects manifest themselves in two important ways: the
renormalization of the single-particle energies and the fi-

nite life time of such renormalized single-particle states.

Though the quantitative calculation of these two quan-
tities is still a topic of current research, the qualitative
difference of these two features seem to be quite clear. For
the sake of convenience of the presentation in this paper,

we classify the two types of terms into coherent and in-

coherent (or scattering) parts, since the renormalization
of single-particle state changes the resonance frequency,

while scattering leads to a decay of coherence or oscil-
lation. For a spatially uniform system, these two types
of effects manifest themselves in tile linear optical spec-
trum and have received extensive attention in the past

decades. The manifestation of the many-body effects in
a spatially non-uniform system has not received compa-

rable attention. It is especially interesting to see, as we
will show later, that these two parts of many-body inter-

action play different roles in the conduction and diffusion
processes in a spatially non-uniform semiconductor.

In this communication, we report on our recent theo-

retical study on the effects of many-body interaction in
a spatially inhomogeneous system. The starting point of

our investigation is the set of Boltzmann-Bloch-Poisson
equations which contains many-body interactions in the

spirit of Refs. I-3 and 5. Namely, the coherent part
is treated within the screened Hartree-Fock (SHF) ap-

proximation, while the scatterings are treated within the
second Born approximation. After following the stan-
dard moment equation approach 6 by assuming the quasi-

equilibrium distribution of carriers, a set of coupled dif-
fusion equations for carrier densities and temperatures

can be derived 7 and given as follows:

cr

OtN a + O_. J_v = RN , (1)

OfT '_ + Oe" Y_ - j_.,ff_ - 0_I4/_ + c%j,_ . Y_v

- od_. J_ = R_r, (2)

where N °, W _, ff_, and T _ stand for density, thermal en-

ergy, drift velocity, and temperature of electrons (&= e)

and holes(c_ = h). j_ and j} are transform Jacobians
which relate thermal energies to temperatures. They are
defined in Ref. 7. For the purpose of this paper, it suffices

to say that they are functions of densities and temper-

atures. In (1) and (2), R_.'s represent generation and
recombination of carriers due to pumping and optical

transitions, while R_'s represent the corresponding heat
sources or sinks. The density and thermal currents in

equations (]) and (2) are defined as in Ref. 7:

J-_ - _--2' (3)

f_ = (2j_ v w° j,_) J_} (4)

The density currents can be written in terms of gradients
of the four macroscopic variables (X = N _, N h, T _, T h)

and the electrical potential, (_, as 7
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X

where we have introduced various diffusion coefficients

and conductivities 7 (c_ ¢/3):
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FIG. 1: Diffusion coefficient DNN (b) and its relative change
_DNN (a) versus carrier density at three temperatures as in-
dicated. Solid and dashed curves in Fig. l(b) are for D>N
and oD ,.vN , respectively.
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FIG. 2: Diffusion coefficient DT.V (b) and its relative change
_DTN (a) versus carrier density at three temperatures as in-
dicated. Solid and dashed curves in Fig. 2(b) axe for DTN
and DON, respectively.

D_oTo = ,_ [(1+ ,_)(C_o+ H_o)+ Hio] , (S)

: .o + +c;,],
_ = ,_ [N_(1+,_) - Xq . (10)

Following two shorthand notations have been introduced:

C_ = OxW _ , (11)

H_ = N_Ox& _ . (12)

Obviously, the C_'s are specific heats of a certain kind,
which represent the contribution from free electron and

hole gases, while H_ 's are the contributions due to many-
body interaction, as they are proportional to the deriva-

tives of self-energy renormalization z (&_) with respect to
densities or temperatures. While equations (6)-(9) define

diffusion coefficients in the density currents (noting the
first index of the coefficients being N_), the correspond-

ing diffusion coefficients in the thermal currents are de-
fined through the relation between the density currents

J} and thermal currents J_, Eq. (4). Factors #_ and rG
in Eqs. (6)-(10) are defined as follows:

#_ = 2a.aEaa m + mh) + ( "_'YLO+ rnhT20) (;3)

j_

,_ = .z__, (14)

where a, fl E {e, h} I a ¢ ft. Moreover, Go and 7 ach are
the relaxation rates of the a component momentum due

to carrier-LO (c-LO) phonon and due to electron-hole

(e-h) scattering, respectively. These rates are defined
microscopically in Ref. 7.

Several general features can be readily observed from
t_he expressions in Eq_s._(6)-(l_O)5 F!rst, all diffusion coef-
ficients and conductivities depend on momentum relax-
ation rates due to e-h scattering through factors #_ and

r]_. On the other hand, the coherent part of the many-

body interaction (through H_) only enters the diffusion
coefficients, but not the conductivities. Second, it is in-

teresting to consider the ambipolar diffusion coefficients,
as commonly defined by setting equal the density cur-
rents of electrons and holes. The arnbipolar currents are
now written as 7

with

fN = -DNNO¢N - IgJVTO_Y" , (15)

•JT = --DTNO_ "3'r -- DTTO-TT , (16)

DN X

DTX =

=_

ck + c)_ + _ + H)_

D°,x + ADNx ,

D°x + ADrx ,

(17)

(18)

where X = N, T as we also assumed the densities and

temperatures to be the same for the two components.



Theidentityin equation(17)definesthefree-carrierdif-
fusioncoefficientD°x and the corresponding many-body
correction ADNx. We observe that the e-h scattering

rate 7 _ (the incoherent part of the many-body effects)
eh

disappears from the ambipolar diffusion coefficients com-

pletely. Only c-LO phonon scattering rates 7_o's remain.
This means that the ambipolar diffusion coefficients de-

pend only on the weighted sum of the scattering rates of
electrons and holes with LO phonons. The coherent part

of the many-body interactions, however, remains present
in the ambipolar diffusion coefficients, as expressed by
the second term ADNx and ADTx in (17) and (18),

respectively. The absence of the e-h scattering and the

remaining presence of the coherent part of the Coulomb
interaction in the ambipolar diffusion coefficients clearly
illustrate different roles played by the two aspects of the
same Coulomb interaction. We note that the absence

of the e-h scattering in the ambipolar diffusion coeffi-

cients is also implied in Ref. 8. But unlike the situation
here, all the Coulomb interaction terms drop out from
the diffusion coefficient in Ref. 8 completely including

the coherent part under the ambipolar diffusion approx-
imation. The absence of the e-h scattering can be eas-

ily understood, since such scattering represents collisions
of the electrons and holes, which now are parts of inte-

gral entities diffusing together under the ambipolar diffu-
sion approximation. However, the coherent part. creates
a new density- and temperature-dependent environment

(energy landscape) for the original quasi-particles (with
unrenormMized energies). They diffuse in the modified
energy-landscape, resulting in an effective change in dif-
fusion coefficients, as we will explain in more detail in

the following.

To study more quantitatively the effects of the co-

herent part of the many-body interaction, we examine
the relative change in diffusion coefficients as defined by

5Dxy = ADxy/D°y. In Figs. 1--4, we plot 5Dxy (a)
and Dxy (b) with respect to density for all four ambipo-
lar diffusion coefficients. As model material system, we
choose GaAs of 8 nm in width. All the material parame-

ters are standard and will not be listed. Fig. 1 shows the

familiar density-diffusion coefficient DN;_-. In Fig. l(b),

coefficients DNN (solid lines) and DONN (dashed lines)
are plotted versus carrier density at three temperatures.
The overall feature of the diffusion coefficient is explained

in detail in a separate paper 9. We see that the coherent

many-body effects result in a reduction in the diffusion
coefficient. The relative change of diffusion coefficient

is plotted in Fig. l(a), where we see a diffusion coeffi-
cient reduction of over 25 percent at 200K. This reduction
decreases as temperature increases. Similar behavior is

also observed in Fig. 2 for the mutual-diffusion coefficient

DTN, which relates carrier density gradient to thermal

flux fT. Fig. 3 shows the temperature-diffusion coeffi-

cient DTT and DOT (a) and the corresponding relative
change 5DTT. Contrary to the reduction of diffusion co-

efficients shown in Figs. 1 and 2, we see an increase in
DTT, i.e., DTT > DOT • Furthermore, the relative in-
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FIG. 3: Diffusion coefficient DTT (b) and its relative change
_DTT (a) versus carrier density at three temperatures as in-
dicated. Solid and dashed curves in Fig. 3(b) are for DTT and
DOT, respectively.

crease 5DTT is much smaller in magnitude than 6DNN
and 5DTN in Figs. 1 and 2. The change is less than

10 percent. Similar behavior is shown _n Fig. 4 for _he
mutual-diffusion coefficient DNT, which describes carrier

density flux induced by temperature gradient.

Let us now explain in more detail these figures. We

begin with the reduction in diffusion coefficients, D_,_N
and DTN, in Figs. 1 and 2, both of which are determined

by the derivatives with respect to density [see Eqs. (11),
(12), (17), and (18)]. This reduction can be explained
by the bandgap renormalization. We note that DNN de-

scribes a carrier density flux from high density region
to low density region. Due to bandgap renormalization
which increases with carrier density, the high density re-

gion has a smaller total bandgap than the low density

region. This means that a diffusing particle from high
density region to low density region will have to climb an
uphill energy landscape due to many-body effects, thus

leading to a reduction in the effective diffusion coeffi-
cients. The reduction in the mutual-diffusion coefficient

DTN needs slightly different explanation. First, we note
that DTN, by definition, describes the thermal flux from

high density region to low density region. Due to the
bandgap renormalization, an energy bandgap profile is
created. A thermal flux is therefore induced from the

high bandgap (lower density) region to lower bandgap
(higher density) region to counteract the thermal flux and
to equilibrate the total energy (bandgap plus the ther-

mal energ3 _) profile. The situation described in Figs. 3
and 4 are exactly the reverse of that in Figs. 1 and
2. The increase in the diffusion coefficients are due to

the bandgap renormalization that decreases with plasma



0.08

_o 0.04

0.00

"7

z
o 4
'l'--

v

o
0

0

(a) 200K

300K 400K

(b) 400_

2 4 6 8 10

N (10_2cm -2)

FIG. 4: Diffusion coefficient DNT (b) and its relative change
5DNT (a) versus carrier density at three temperatures as in-
dicated. Solid and dashed curves in Fig. 4(b) are ff_r DNT

and DO,T, respectively.

temperature 1° instead of increasing with density as in

Figs. 1 and 2. The energy landscape reverses from the
cases of Figs. 1 and 2 and leads to increase of diffusion

coefficients D_,T and DTT. In short, the many-body ef-
fects on diffusion coefficients lead to a decrease in those

d_iffus]on coe/Sficients-that are related to the density gra-

dient (,DNN and DTN) and an increase in those that are

related to temperature gradient (DTT and D_'T). Fi-
nally, the smaller change in DTT and DNT (Figs. 3 and

4) than in DNN and DTN (Figs. 1 and 2) is due to the
weaker dependence of the bandgap renormalization with
respect to plasma temperature than to density.

Another feature of Figs. 1 and 2 is the decrease of

the relative change 5D_vN and 5DTN at lower density
until the carrier density reaches the critical value near
lx1012 cm -2, where electrons become degenerate. This

decrease is a result of the reduction of the bandgap due

to bandgap renormalization and to an almost constant
value of Ds-N and DTN. The relative change 5DNN
reaches a minimum around 28 percent for 200K. With
the further increase of carrier density, 5D_,N and (JDTN

start to increase as the carriers become strongly degen-

erate and DoN and DON begin to rise dramatically 9. At
high density for lasing over 1 x 1012 cm -2, the diffusion

reduction is still over 20 percent. The larger values of
6DNN and 3DTN at higher temperature are mainly due

to the increase of the D°.N and DON with temperature.

In summary, many-body effects are investigated in a
semiconductor quantum well where spatial nonunifor-

mity of densities and temperatures exists along the quan-
tum well plane. Different roles played by the coherent
and incoherent parts of Coulomb interaction are ana-

lyzed. While both coherent and incoherent parts con-

tribute to the diffusion coefficients of the general two
component system, the conductivities depend only on

the scattering part. Even though e-h scattering plays
an important role in legitimating the ambipolar diffusion
approximation r, we show that the diffusion coefficients

of the established composite system do not depend on

the e-h scattering rate. Instead the ambipolar diffusion
coefficient depends only on the coherent part of the inter-

action, the bandgap renormalization. Vv'e found that the
coherent many-body interaction leads to a significant re-
duction of the ambipolar diffusion coefficients DNN and

DTN and an increase in coefficients DTT and DNT. \¥e
note that this quite significant change in diffusion coeffi-

cients, especially in DNN and DTN, should be important
in describing optoelectronic devices where spatial inho-

m6-g_eities- 6f densities; or plasma temperatures occur.
Such non-uniformities are quite ubiquitous in high power

and ultrafast devices, such as lasers and photodetectors.
Simulation of such devices using the microscopically cal-
culated diffusion coefficients will be reported elsewhere.
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